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Outline



State Estimation and Control

The object of interest is a given dynamical system - a plant - with input
Uk , output Yk , and state Xk



State Estimation

In state estimation, the inputs U0; : : : ;Uk and outputs Y0; : : : ;Yk are
used to estimate/predict the plant state in real-time.



Feedback Control

In control, the outputs Y0; : : : ;Yk are used to generate the input
Uk , which is fed back into the plant.
Aim is to regulate closed-loop system behaviour in some desired
sense - e.g. ‘small’ Xk and Uk - despite noise and model
uncertainty.

kX State       

System. Dynamical
kU Input

kY Output

Noise/Uncertainty  

Controller  
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NetworkedStateEstimation/Control

Classical assumption: controllers and estimators knew plant

outputs perfectly.

Since the 60's this assumption has been challenged:

I

Delays, due to latency and intermittent channel access, in largecontrol area networksin factories.

I

Quantisation errors insampled-data/digitalcontrol,I

Finite communication capacity (per-sensor) in long-range radarsurveillance networks

Limited quantiser resolution and capacity are less understood

than delay in control.
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Additive Noise Model

Early work considered static quantisation and errorless channels.
Quantiser errors modelled as additive, uncorrelated measurement
noise [e.g. Curry 1970] with variance µ 2�2R (R = errorless bit
rate).
Good for stable plants and high R, and allows linear stochastic
estimation/control theory to be applied.
However, for unstable plants it leads to conclusions that are
qualitatively wrong:

1 If plant is noiseless and unstable, then states/estimation errors
cannot converge to 0 .

2 If plant is unstable, then mean-square-bounded states/estimation
errors can always be achieved.
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Additive Noise Model

Early work considered static quantisation and errorless channels.
Quantiser errors modelled as additive, uncorrelated measurement



Errorless Channels

In fact, ‘reliable’ state estimation or control is possible iff

R > å
jλi j�1

log2 jλi j;

where λ1; : : : ;λn = eigenvalues of plant matrix A. The RHS
coincides with the topological entropy (TE) of the plant.
Holds under various assumptions and reliability notions [Baillieu;
Tatikonda-Mitter; N.-Evans]
I Random initial state, noiseless plant; mean r th power convergence

to 0.
I Bounded initial state, noiseless plant; uniform convergence to 0
I Random plant noise; mean-square boundedness.
I Bounded plant noise; uniform boundedness

Additive uncorrelated noise models of quantisation fail to capture
the existence of such a threshold.
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Noisy Channel

‘Stable’ states/estimation errors possible iff a suitable channel
figure-of-merit (FoM) satisfies

FoM > å
jλi j�1

log2 jλ





Noisy Channel

‘Stable’ states/estimation errors possible iff a suitable channel
figure-of-merit (FoM) satisfies

FoM > å
jλi j�1

log2 jλi j;

where λ1; : : : ;λn = eigenvalues of plant matrix A.

FoM depends on stability notion and noise model.
I FoM = C - states/est. errors! 0 almost surely (a.s.) [Matveev-Savkin

SIAM07], or mean-square bounded (MSB) states over AWGN
channel [Braslavsky et al. TAC07]

I FoM = Cany - MSB states over DMC [Sahai-Mitter TIT06]
I FoM = C0f for control or C0 for state estimation, with a.s. bounded

states/est. errors [Matveev-Savkin IJC07]

Note C � Cany � C0f � C0.
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FoMdependsonstabilitynotionandnoisemodel.

I

FoM=C-states/est.errors!0almostsurely(a.s.)[Matveev-Savkin

SIAM07],ormean-squarebounded(MSB)statesoverAWGN

channel



MissingInformation

IfthegoalisMSBora.s.convergence!0ofstates/estimation

errors,thendifferentialentropy,entropypower,mutualinformation,

andthedataprocessinginequalityarecrucialforprovinglower

bounds.

However,whenthegoalisa.s.boundedstates/errors,classical

informationtheoryhasplayednorolesofarinnetworked

estimation/control.

YetinformationinsomesensemustbeHowingacrossthe

channel,evenwithoutaprobabilisticmodel/objective.

NairhUni.MelbourneiNonstochasticInformationAuSIT1411/47



Questions

Is there a meaningful theory of information for nonrandom
variables?
Can we construct an information-theoretic basis for networked
estimation/control with nonrandom noise?
Are there intrinsic, information-theoretic interpretations of C0 and
C0f ?
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Why Nonstochastic Anyway?

Long tradition in control of treating noise as nonrandom perturbation
with bounded magnitude, energy or power:

Control systems usually have mechanical/chemical components,
as well as electrical.
I Dominant disturbances may not be governed by known probability

distributions.
I E.g. in mechanical systems, main disturbance may be vibrations at

resonant frequencies determined by machine dimensions and
material properties.

In contrast, communication systems are mainly
electrical/electro-magnetic/optical.
I Dominant disturbances - thermal noise, shot noise, fading etc. -

well-modelled by probability distributions derived from
statistical/quantum physics.

Nair (Uni. Melbourne) Nonstochastic Information AuSIT14 13 / 47



Why Nonstochastic Anyway?

Long tradition in control of treating noise as nonrandom perturbation
with bounded magnitude, energy or power:

Control systems usually have mechanical/chemical components,
as well as electrical.
I Dominant disturbances may not be governed by known probability

distributions.
I E.g. in mechanical systems, main disturbance may be vibrations at

resonant frequencies determined by machine dimensions and
material properties.

In contrast, communication systems are mainly
electrical/electro-magnetic/optical.
I Dominant disturbances - thermal noise, shot noise, fading etc. -

well-modelled by probability distributions derived from
statistical/quantum physics.

Nair (Uni. Melbourne) Nonstochastic Information AuSIT14 13 / 47



Why Nonstochastic Anyway?

Long tradition in control of treating noise as nonrandom perturbation
with bounded magnitude, energy or power:

Control systems usually have mechanical/chemical components,
as well as electrical.
I Dominant disturbances may not be governed by known probability

distributions.
I E.g. in mechanical systems, main disturbance may be vibrations at

resonant frequencies determined by machine dimensions and
material properties.

In contrast, communication systems are mainly
electrical/electro-magnetic/optical.
I Dominant disturbances - thermal noise, shot noise, fading etc. -

well-modelled by probability distributions derived from
statistical/quantum physics.

Nair (Uni. Melbourne) Nonstochastic Information AuSIT14 13 / 47





Why Nonstochastic Anyway?

Long tradition in control of treating noise as nonrandom perturbation
with bounded magnitude, energy or power:

Control systems usually have mechanical/chemical components,
as well as electrical.
I Dominant disturbances may not be governed by known probability

distributions.
I E.g. in mechanical systems, main disturbance may be vibrations at

resonant frequencies determined by machine dimensions and
material properties.

In contrast, communication systems are mainly
electrical/electro-magnetic/optical.
I Dominant disturbances - thermal noise, shot noise, fading etc. -

well-modelled by probability distributions derived from
statistical/quantum physics.

Nair (Uni. Melbourne)



Why Nonstochastic Anyway? (cont.)

Related to the previous points,
In most digital comm. systems, bit periods Tb � 2�10�5s or
shorter.
) Thermal and shot noise (σ µ

p
Tb) noticeable compared to

detected signal amplitudes (µ Tb).
Control systems typically operate with longer sample or bit
periods, 10�2 or 10�3s.
) Thermal/shot noise negligible compared to signal amplitudes.



Why Nonstochastic Anyway? (cont.)

Related to the previous points,
In most digital comm. systems, bit periods Tb � 2�10�5s or
shorter.
) Thermal and shot noise (σ µ

p
Tb) noticeable compared to

detected signal amplitudes (µ Tb).
Control systems typically operate with longer sample or bit
periods, 10�2 or 10�3s.
) Thermal/shot noise negligible compared to signal amplitudes.

Nair (Uni. Melbourne) Nonstochastic Information AuSIT14 14 / 47



Why Nonstochastic Anyway? (cont.)

For safety or mission-critical reasons, stability and performance
guarantees often required every time a control system is used, if
disturbances within rated bounds.
Especially if plant is unstable or marginally stable.
Or if we wish to interconnect several control systems and still be
sure of performance.
In contrast, most consumer-oriented communications requires
good performance only on average, or with high probability.





Uncertain Variable Formalism

Define an uncertain variable (uv) X to be a mapping from an
underlying sample space 
 to a space X.
Each ω 2 
 may represent a specific combination of noise/input
signals into a system, and X may represent a state/output
variable.
For a given ω, x = X (ω) is the realisation of X .

Unlike probability theory, no σ -algebra � 2




Uncertain Variable Formalism

Define an uncertain variable (uv) X to be a mapping from an
underlying sample space 
 to a space X.
Each ω 2 
 may represent a specific combination of noise/input
signals into a system, and X may represent a state/output
variable.
For a given ω, x = X (ω) is the realisation of X .

Unlike probability theory, no σ -algebra � 2
 or measure on 
 is
imposed.
Assume 
 is uncountable to accommodate continuous X.
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UV Formalism- RangeT8 0.68 0.:nd.68 0.Conditioning



Independence Without Probability

Definition

The uv’s X ;Y are called (mutually) unrelated if

JX ;Y K = JX K� JY K; (1)

denoted X ? Y . Else called related.

Equivalent characterisation:

Proposition

The uv’s X ;Y unrelated if

JX jyK = JX K; 8y 2 JY K: (2)

Unrelatedness is equivalent to X and Y inducing qualitatively
independent [Rényi’70] partitions of 
 when 
 is finite.
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Examples of Relatedness and Unrelatedness

y y

Nair (Uni. Melbourne) Nonstochastic Information AuSIT14 20 / 47



Markovness without Probability

Definition
X ;Y ;Z said to form a Markov uncertainty chain X �Y �Z if

JX jy ;zK = JX jyK; 8(y ;z) 2 JY ;Z K: (3)

Equivalent to

JX ;Z jyK = JX jyK� JZ jyK; 8y 2 JY K;

i.e. X ;Z conditionally unrelated given Y , X ? Z jY .
X ;Y ;Z said to form a conditional Markov uncertainty chain given
W if X � (Y ;W )�Z .
Can also write X �Y �Z jW or X ? Z jY ;W .
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Information without Probability

Definition



Information without Probability

Definition
Two points (x ;y);(x 0;y 0) 2 JX ;Y K are called taxicab connected
(x ;y)! (x 0y 0) if 9 a sequence

(x ;y) = (x1;y1);(x2;y2); : : : ;(xn�1;yn�1);(xn;yn) = (x 0;y 0)

of points in JX ;Y K such that each point differs in only one coordinate
from its predecessor.

Not hard to see that! is an equivalence relation on JX ;Y K.
Call its equivalence classes a taxicab partition T [X ;Y ] of JX ;Y K.
Define a nonstochastic information index

I�[X ;Y ] := log2 jT [X ;Y ]j 2 [0;¥]: (4)
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Connection to Common Random Variables

T [X ;Y ] also called ergodic decomposition [Gács-Körner PCIT72].
For discrete X ;Y , equivalent to connected components of
[Wolf-Wullschleger itw04], which were shown there to be the maximal
common rv Z�, i.e.
I Z� = f�(X ) = g�(



T[

X;Y]

also called ergodic decomposition[Gács-KörnerPCIT72]

For discreteX;Y, equivalent to

connected componentsof
[Wolf-Wullschlegeritw04]

, which were shown there to be the maximal
common rv Z

Not hard to see that

Z.00 also has the largest no. distinct values ofany common rv

Z

.21f

.50X.51

.21g

.50Y

.51

I.00f



ExamplesExamples

25

y

x

y

x

z=1

z=0

z=1

z=0

| | 2 max.#  distinct values

that can always be agreed on 

from separate observations of  & . X Y

= =
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Equivalent View via Overlap Partitions

As in probability, often easier to work with conditional rather than
joint ranges.
Let JX jY K := fJX jyK : y 2 JY Kg be the conditional range family.

Definition
Two points x ;x 0 are called JX jY K-overlap-connected if 9 a sequence of
sets B1; : : : ;Bn 2 JX jY K s.t.

x 2 B1 and x 0 2 Bn

Bi \Bi+1 6= /0, 8i 2 [1 : n�1].

Overlap connectedness is an equivalence relation on JX K,
induced by JX jY K.
Let the overlap partition JX jY K� of JX K denote the equivalence
classes.
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Equivalent View via Overlap Partitions (cont.)



Equivalent View via Overlap Partitions (cont.)

Proposition
For any uv’s X ;Y ,

I�[X ;Y ] = log2 jJX jY K�j : (5)

Proof Sketch:
For any two points (x ;y);(x 0;y 0) 2 JX ;Y K, (x ;y)! (x 0;y 0) iff x 0

and x 0 are JX jY K-overlap-connected.
This allows us to set up a bijection between the partitions T [X ;Y ]
and JX jY K�.
)T [X ;Y ] and JX jY K� must have the same cardinality.
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Equivalent View via Overlap Partitions (cont.)

Proposition
For any uv’s X ;Y ,

I�[X ;Y ] = log2 jJX jY K�j : (5)

Proof Sketch:
For any two points (x ;y);(;J X ;Y;(X

;y; (;1278 [(()]TJ/F56 10.9091 Tf 4.24295 Tf 505 G
0.2 3f 4/Fm3 Do
Q
0 g -299 0.00.07Tf 4.5 G
0andJX jY(5310..2 0.117 RG
ET
q
1 0 0 1 21.225 128.9 1 -2000.02579 -2011 104g 0 7 cm
/Fm3 Do
Q
0 g 0 G
0 g994 8





Properties of I� (cont.)

Proposition (Monotonicity)
For any uv’s X ;Y and Z,

I�[X ;Y ]� I�[X ;Y ;Z ]: (7)

Proof: Idea is to find a surjection from JX jY ;Z K�! JX jY K�. This would
automatically imply that the latter cannot have greater cardinality.

Pick any set B 2 JX jY ;Z K� and choose a B0 2 JX jY ;Z K� s.t.
B\B0 6= /0.
At least one such B0 exists, since JX jY ;Z K� covers JX K.
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Proof of Monotonic Property (cont.)

Furthermore, exactly one such intersecting B0 2 JX jY ;Z K� exists
for each B 2 JX jY ;Z K�, since B� B0:
I By definition, any x 2 B and x 0 2 B\B0 are connected by a

sequence of successively overlapping sets in JX jY ;Z K.
I As JX jy ;zK� JX jyK, x ;x 0 are also connected by a sequence of

successively overlapping sets in JX jY K.
I But B0 = all pts. that are JX jY K-overlap connected with the

representative pt. x 0 2 B0, so x 2 B0.
I As x was arbitrary, B� B0.

Thus B 7! B0 is a well-defined map from JX jY ;Z K�! JX jY K�.
Furthermore it is onto, since every set B0 2 JX jY K� intersects
some B in JX jY ;Z K�, which covers JX K.
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Proof of Monotonic Property (cont.)
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Properties of I� (cont.)
Proposition (Data Processing)
For Markov uncertainty chains X �Y �Z (3),

I�[X ;Z ]� I�[X ;Y ]:

Proof:

By monotonicity and the overlap partition characterisation of I�,

I�[X ;Z ]
(7)

� I�[X ;Y ;Z ]
(5)
= log jJX jY ;Z K�j: (8)

By Markovness (3), JX jy ;zK = JX jyK, 8y 2 JY K and z 2 JZ jyK.
) JX jY ;Z K = JX jY K.
) JX jY ;Z K� = JX jY K�.

X
Proof:
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Properties of I� (cont.)
Proposition (Data Processing)
For Markov uncertainty chains X �Y �Z (3),

I�[X ;Z ]� I�[X ;Y ]:

Proof:

By monotonicity and the overlap partition characterisation of I�,

I�[X ;Z ]
(7)

� I�[X ;Y ;Z ]
(5)
= log jJX jY ;Z K�j: (8)

By Markovness (3), JX jy ;zK = JX jyK, 8y 2 JY K and z 2 JZ jyK.
) JX jY ;Z K = JX jY K.
) JX jY ;Z K� = JX jY K�.
Substitute into the RHS of the equation above. �
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Stationary Memoryless Uncertain Channels - Take 1

An uncertain signal X is a mapping from 
 to the space X¥ of
discrete-time sequences x = (xi)

¥

i=0 in X.
A stationary memoryless uncertain channel may be defined in
terms of
I input and output spaces X;Y;
I a set-valued transition function T : X! 2Y;
I and the family of all uncertain input-output signal pairs (X ;Y ) s.t.

JYk jx0:k ;y0:k�1K = JYk jxk K = T(xk ); k 2 Z�0: (9)

If channel ‘used without feedback’, then impose the extra
constraint

JXk jx0:k�1;y0:k�1K = JXk jx0:k�1K; k 2 Z�0; (10)

on (X ;Y ).
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Channel Noise?

Previous formulation parallels [Massey isit90] for stationary
memoryless stochastic channels:

fYk jX0:k ;Y0:k�1(yk jx0:k ;y0:k�1) = fYk jXk (yk jxk )� q(yk ;xk ):

In many cases, it is enough to think in terms of these conditional
ranges. Channel noise implicit.
However, in many cases it is convenient to model channel noise
explicitly. E.g.
I when the transmitter has access to some function of past channel

noise, not just past channel outputs,
I or when the channel is part of a larger system, with other input and

noise signals.
In this case, previous formulation would have to be changed to
include the other terms in the conditioning arguments.
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Channel Noise?



Channel as Noisy Function

Definition
A



ZeroErrorCodinginUVFramework(NoFeedback)

Let

M:=setofalluv's?V .

Azero-errorcodew/ofeedbackisdel 1nedby

Iablocklengthn +1

2N ;Iamessagecardinality

m�

1;Iandanencodermapping

g

:[

1

:m

]

!

Xn+1

,s.t.foranyM

2M takingm

distinctvalues

m1

;:::;mm

,FX0:n= g(i)if M

= m i

. FjJMjy0:nKj= 1 ;8y0:n2JY0:nK.

mapsY

0

:

n

7!

M

,despitechannelnoise.
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Zero Error Coding in UV Framework (No Feedback)

Decoder 

Let M := set of all uv’s ? V .
A zero-error code w/6.0002 -eedback is defined by
I a block length n + 1 2 N;
I a message cardinality µ � 1;
I and an encoder mapping γ : [1 : µ]! Xn+1



Zero Error Coding in UV Framework (No Feedback)

Decoder 

Let M := set of all uv’s ? V .
A zero-error code w/o feedback is defined by
I a block length n + 1 2 N;
I a message cardinality µ � 1;
I and an encoder mapping γ : [1 : µ]! Xn+1, s.t. for any M 2M

taking µ distinct values m1; : : : ;mµ ,
F X0:n = γ(i) if M = mi .
F jJMjy0:nKj= 1;8y0:n 2 JY0:nK.

Last condition equivalent to existence of a decoder that always
maps Y0:n 7!M, despite channel noise.
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Proof: � (Construct a Code)

Pick any (X ;Y ) 2 Gnf ;n 2 N



Proof: � (Construct a Code)

Pick any (X ;Y ) 2 Gnf ;n 2 N. Let

µ = jJX0:n;Y0:nK�j � jJY0:n;X0:nK�j ;

and index the overlap partition sets:

JX0:n;Y0:nK� � fPX (z) : z 2 [1 : µ]g ; (14)
JY0:n;X0:nK� � fPY (z) : z 2 [1 : µ]g : (15)

Define uv Z as the unique index s.t. PX (Z ) 3 X0:n.
This is also the unique index s.t. PY (Z ) 3 Y0:n.
For each z 2 [1 : µ], pick an input sequence x(z) 2 PX (z)� JX0:nK
and define the coder map

γ(z) = x(z) 2 JX0:nK; 8z 2 [1 : µ]:
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Proof: � (cont.)
Now, consider any message M 2M that can take µ distinct values
m1; : : : ;mµ . Encode this message to give an input uv sequence

X 00:n = x(i) if M = mi :

This yields an output sequence Y 00:n, where

Y 0k = τ(X 0k ;Vk ); k 2 [0 : n]:

As M and X0:n each ? V , it follows that if M = mi then

JY 00:njX 00:n = x(i)K = JY0:njX0:n = x(i)K� PY (i):

Sets PY (1); : : :PY (µ) are disjoint since they form a partition
) Message M can be recovered from Y 00:n with this code.
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Proof: � (cont.)
Now, consider any message M 2M that can take µ distinct values
m1; : : : ;mµ . Encode this message to give an input uv sequence

X 00:n = x(i) if M = mi :

This yields an output sequence Y 00:n, where

Y 0k = τ(7 -24.275 Td [(Y)]TJ/F80 7.9701 Tf 8.792 4.5 -24.275 Td [(Y)]TJ/F80 7.9701 Tf 8.792 4.505 Td [(0)]TJ/F56kM







Proof: � (Construct (X ;Y ) 2 Gnf )

Select an arbitrary zero-error code (n; µ;γ).
Pick a message uv M 2M taking distinct values m1; : : : ;mµ .
Set

X0:n = γ(i)if M = mi

Xk = Xn; k > n:

Yk = τ(Xk ;Vk ); k 2 Z�0:

As X0:n is a function of M ? V , it follows that X ? V
Thus (X ;Y ) 2 Gnf .
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Proof: � (cont.)

By zero-error property, the sets JY0:njX0:n = γ(i)K, i = 1; : : : ; µ, are
disjoint, therefore distinct.
Thus each partition set in JY0:njX0:nK� contains exactly one of
these sets:
I It includes at least one set JY0:njx0:nK.
I If it includes more than one such set then, by definition of the

overlap partition they would have overlaps, which is impossible.

) µ = jJY0:njX0:nK�j.
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Conditional Maximin Information

An information-theoretic characterisation of C0f , in terms of directed
nonstochastic information:

First, let T [X



Conditional Maximin Information

An information-theoretic characterisation of C0f , in terms of directed
nonstochastic information:

First, let T [X ;Y jw ] := taxicab partition of the conditional joint
range JX ;Y jwK, given W = w .
Then define conditional nonstochastic information

I�[X ;Y jW ] := min
w2JW K

log2 jT [X ;Y jw ]j :

w

wK



C0f in terms of I�

Zero-error feedback capacity C0f is defined operationally (in terms
of the largest log-cardinality of sets of feedback coding functions
that can be unambiguously determined from channel outputs).
Define directed nonstochastic information

I�[X0:n! Y0:n] :=
n

å
k=0

I�[Xn] := [ [ Y 0:

I =�



Networked State Estimation/Control Revisited

[N. TAC13]: It is possible to achieve uniformly bounded estimation errors
iff C0 > HA := åjλi j�1 log2 jλi j.

kkkk

kkk

VBUAXX

WGXY





1

,    kU kY
 Decoder/ 

Controller 

Channel 
kQ Quantiser

[N. cdc12]: It is possible to achieve uniformly bounded states iff C0f > HA.
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Summary

This talk described:
A nonstochastic theory of uncertainty and information, without
assuming a probability space.
Intrinsic characterisations of the operational zero-error capacity
and zero-error feedback capacity for stationary memoryless
channels
An information-theoretic basis for analysing worst-case networked
estimation/control with bounded noise.

Outlook
I New bounds or algorithms for C0?
I C0f for channels with memory?
I Zero-error capacity with partial/imperfect feedback?
I Multiple users?
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