Â鶹´«Ã½AV

Submitted by admin on Wed, 10/23/2024 - 01:52

Particle beam microscopy (PBM) performs nanoscale imaging by pixelwise capture of scalar values representing noisy measurements of the response from secondary electrons (SEs) integrated over a dwell time. Extended to metrology, goals include estimating SE yield at each pixel and detecting differences in SE yield across pixels; obstacles include shot noise in the particle source as well as lack of knowledge of and variability in the instrument response to single SEs. A recently introduced time-resolved measurement paradigm promises mitigation of source shot noise, but its analysis and development have been largely limited to estimation problems under an idealization in which SE bursts are directly and perfectly counted. Here, analyses are extended to error exponents in feature detection problems and to degraded measurements that are representative of actual instrument behavior for estimation problems. For estimation from idealized SE counts, insights on existing estimators and a superior estimator are also provided. For estimation in a realistic PBM imaging scenario, extensions to the idealized model are introduced, methods for model parameter extraction are discussed, and large improvements from time-resolved data are presented.

Akshay Agarwal
Minxu Peng
Vivek K Goyal