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§  Phase noise due to (1) oscillator instability; (2) fiber non-linearities

§  Phase noise statistics:

§  phase-locked loops (PLLs) residual noise: von Mises/Tikhonov 
distribution

§  satellite (DVB-S2): white Gaussian process filtered by IIR filters

§  fiber-optic lasers: Wiener process

§  Raman amplification: large bandwidth Gaussian process

1) Phase Noise Models
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n  Simplified model (Barletta-Kramer, 2014) 
 
  
 
Θ(t) is white* and N(t) is white Gaussian* (both are idealizations)

n  Motivation: phase noise bandwidth much larger than receiver bandwidth

n  Mathematically: let {øm(t)} be an orthonormal basis of L2[0,T] 
and project X(t), N(t), and R(t) onto the øm(t) 
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Discretization (1)

n  X(t) and N(t):

n  Receiver: 
 
 

Yk = X t( )e jΘ
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Discretization (2)

n  Samples: 
 
 
 





n  Single-Mode Fiber (SMF): a small core that carries one mode of light

n  Here one mode has 2 complex dimensions: two polarizations

n  Theory papers often consider one complex dimension; 



SMF Pulse Propagation Equation

E :   Electromagnetic field, function of z and T
z:    Distance
T :   Retarded time t-β1z
α :   Fiber loss coefficient (~ 3 dB/15 km) 
β1 :  Inverse of group velocity 
β2 :  Fiber group velocity dispersion 
β3 :  Fiber dispersion slope (include if β2 small)
γ  :  Fiber nonlinear parameter (n2 ω)/(c Aeff)

Fiber
Loss/Gain

Dispersion
Slope



Fiber
Loss/Gain

Nonlinear

• To simulate, split the fiber length z* into K small steps (Δz) and the 
time T into L small steps (Δt)

• Split-step Fourier method at distance zk, k=0,1,...,K

Noise



n  Consider a complex column vector X = Xc + j Xs with covariance and 
pseudo-covariance matrices

n  For interest: X is called proper if its pseudo-covariance matrix is 0

n  Example: Consider a complex, zero-mean, scalar X = Xc + j Xs . 

X is proper if E[Xc
2]=E[Xs

2] and E[XcXs]=0. 

Note: circularly symmetric X are proper, but proper X are not 

necessarily circularly symmetric (e.g. QAM signal sets)

QX = E X − E X[ ]( ) X − E X[ ]( )†"
#

$
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n  Maximum Entropy: consider the correlation matrix RX=E[X X†] where X





Main Observations

• The linear step conserves 



• Energy after K steps: EnergyLaunch + KN . We thus have:
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*SNR = receiver signal-to-noise ratio

So for every step we have:

• Signal energy grows by the noise variance: can upper bound h( E(zK) )

• Entropy power grows by at least the noise variance: 
can lower bound h( E(zK) | E(z0) )

• Result*:

Nonlinear Noise
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I E( z0 );E( zK )( ) = h E( zK )( ) − h E( zK ) E( z0 )( )
≤ L ⋅ log 1+SNR( )
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⇒
1

L
I E( z0 );E( zK

)( ) ≤ log 1+SNR( )

•  Let B = 1/Δt be the “bandwidth” of the simulation

• So L = T/Δt = TB is the time-bandwidth product

• The spectral efficiency is thus bounded by

η ≤ log 1+SNR( )   [bits/sec/Hz]
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