

Information Rates for Phase Noise Channels (including fiber optic channels)

Claude Elwood Shannon

1) Phase Noise Models

SMF Pulse Propagation Equation

- *E* : Electromagnetic field, function of *z* and *T*
- z: Distance
- *T* : Retarded time $t \beta_1 z$
- α : Fiber loss coefficient (~ 3 dB/15 km)
- β_1 : Inverse of group velocity
- β_2 : Fiber group velocity dispersion
- β_3 : Fiber dispersion slope (include if β_2 small)
- γ : Fiber nonlinear parameter (n₂)/(c A_{eff})

Main Observations

<u>E</u>

! log(1+SNR) [bits/sec/Hz]