Bayesian Algorithms for Decentralized Stochastic Bandits
We study a decentralized cooperative multi-agent multi-armed bandit (MAB) problem with K arms and N agents connected over a network. In this model, each arm's reward distribution is the same for every agent, and rewards are drawn independently across agents and over time steps. At each iteration, agents independently choose an arm to play and exchange at most poly(K) real-valued messages with their neighbors.