麻豆传媒AV

Locally Testable Codes with Constant Rate, Distance, and Locality
Irit Dinur Shai Evra Ron Livne Alexander Lubotzky Shahar Mozes
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC2022), Rome, Italy, June 2022
Abstract
A locally testable code (LTC) is an error correcting code that has a property-tester. The tester reads q bits that are randomly chosen, and rejects words with probability proportional to their distance from the code. The parameter q is called the locality of the tester.
LTCs were initially studied as important components of probabilistically checkable proofs (PCP), and since then the topic has evolved on its own. High rate LTCs could be useful in practice: before attempting to decode a received word, one can save time by first quickly testing if it is close to the code.
An outstanding open question has been whether there exist 鈥c3-LTCs鈥, namely LTCs with constant rate, constant distance, and constant locality.
In this work we construct such codes based on a new two-dimensional complex which we call a left-right Cayley complex. This is essentially a graph which, in addition to vertices and edges, also has squares. Our codes can be viewed as a two-dimensional version of (the one-dimensional) expander codes, where the codewords are functions on the squares rather than on the edges.